$$\begin{split} F &= \frac{2}{1-p^2} \left[1 - \frac{1}{(m\pi)^2} \right]^{-1} \\ &\times \left\{ \frac{J_1(2m\pi p)}{2m\pi p} - \frac{1}{(2m\pi)^2} \left[1 + J_0(2m\pi p) \right. \\ &+ \left(\frac{p}{2} \right)^2 \left\{ 2 \left(1 + J_0(2m\pi p) \right) - 2J_2(2m\pi p) \right\} \dots \\ &+ \left(\frac{p}{2} \right)^n \left\{ {}^{2n}C_n (1 + J_0(2m\pi p)) - 2{}^{2n}C_{n-1}J_2(2m\pi p) \dots \\ &+ \left. \left. + \left(- \right)^n J_{2n}(2m\pi p) \right\} \right] \right\} \end{split}$$

C. An expansion asymptotic to F for large values of $p(1-p^2)$.

We give the leading terms of this expansion, these being sufficient to calculate F to $\sim 1\%$ accuracy in the ranges 1/(2m)

$$\begin{split} F &= \frac{2}{1-p^2} \bigg[1 - \frac{1}{(m\pi)^2} \bigg]^{-1} \Biggl\{ \frac{J_1(2m\pi p)}{2m\pi p} - \frac{1}{(2m\pi)^2} \bigg[\begin{array}{c} 0, \, p > 1 \, ; \\ (1-p^2)^{-\frac{1}{2}}, \, p < 1 \end{array} \bigg] \\ &- \frac{1}{(2m\pi)^2} \cdot \frac{(2m\pi p)^{-\frac{1}{2}}}{1-p^2} \cdot \left(\frac{2}{\pi} \right)^{\frac{1}{2}} \Biggl(\frac{\cos\left(2m\pi p - \frac{\pi}{4}\right) \cdot \left[1 - \frac{9 + 30\,p^2 + 345\,p^4}{2!\,[16m\pi p(1-p^2)]^2} + \cdots \right]}{+ \sin\left(2m\pi p - \frac{\pi}{4}\right) \cdot \left[\frac{1-9\,p^2}{16m\pi p(1-p^2)} - \frac{225 - 315\,p^2 - 17325\,p^4 - 28,665\,p^6}{3!\,[16m\pi p(1-p^2)]^3} \right]} \Biggr) \Biggr\}$$

In an interpretation of the scattering pattern of keratin, R.D.B. Fraser & T. McRae (Private communication) evaluated F^2 for 2m = 7 and p in the range $0.15 , using the series A and C. The graph of <math>F^2$ in this range is shown in Fig. 1.

Reference OSTER, G. & RILEY, D. P. (1952). Acta Cryst. 5, 272.

Acta Cryst. (1959). 12, 72

The unit-cell dimensions and space group of monoclinic NiSO₄.6H₂O. By D. JUNE SUTOR Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 23 September 1958)

Crystals of the green monoclinic hexahydrate of nickel sulphate, which is unstable at room temperature, were obtained by the slow evaporation of a cold mixture of solutions of disodium adenosine triphosphate and nickel sulphate whilst trying to crystallize a heavy atom salt of the nucleotide. The unit-cell dimensions of two different crystals, determined from rotation and Weissenberg photographs, are given in Table 1.

Table	1. Unit-cell dim	Unit-cell dimensions	
	Crystal 1	Crystal 2	
a (Å)	9.84	11.58	
b (Å)	7.17	6.09	
c (Å)	24.0	23.9	
β (°)	97.5	94.0	

The axial ratios of crystal 1 (1.372:1:3.347) agree with those quoted by Groth when the *c* axis of his crystal is doubled (1.3723:1:3.3526, $\beta = 98^{\circ}$ 15'). Crystal 1 is also isomorphous with the modification of MgSO₄.6 H₂O studied by Ide (1938), (*a* = 10.04, *b* = 7.15, *c* = 22.34 Å, $\beta = 98^{\circ}$ 34', space group given as C2/c). The measured density $2 \cdot 0 \pm 0 \cdot 1$ g.cm.⁻³ corresponds to the more accurate value $2 \cdot 036$ quoted in Groth; the calculated value for 8 molecules per unit cell is $2 \cdot 07$ for both crystals 1 and 2.

For both crystals reflexions hkl are absent when h+k is odd, but there are no other systematic lattice absences; the space group may thus be either C2/m, Cm or C2.

For crystal 1, the absence of peaks along the line z = 0in the 0kl sharpened Patterson projection precludes a mirror plane perpendicular to b, but the presence of peaks along y = 0 indicates a two-fold axis parallel to b; the space group is probably C2. Although there is no glideplane perpendicular to the diad axis, the 00l reflexions with l odd are absent, suggesting that the z coordinates of at least the nickel atoms are in accordance with the space group C2/c.

No further work on this compound is contemplated.

Reference

IDE, K. H. (1938). Naturwissenschaften, 26, 411.

